SOFTWARE MANAGEMENT

Requirements
that Handle
IKIWISI, GOTS,

and Rapld change

Barry Boehm, University of Southern California

n the good old days, dealing with

software requirements was relatively

easy. Software requirements were

the first order of business and took

place before design, cost estimation,
planning, or programming. Of course, it
wasn’t simple. Certain straightforward
criteria required satisfaction:

e completeness (no missing elements
and each element fully described);

e consistency (no mismatches among
the elements);

e traceability (back to the require-
ments for the system); and

e testability (specific enough to serve
as the basis for a pass/fail test for the
end product).

And, while avoiding design decisions
about how all of this should be accom-
plished, you had to ensure that the
requirements detailed the software’s
capabilities and any quality levels it must
satisfy.

Completing these tasks might take
time, but it was the only way you could
guarantee that the delivered software
conformed to original specifications.
And, if you were contracting for software
development, it was the only airtight way
to ensure that competitive bidders were
bidding to produce the same product. It
was also the only basis for negotiating an
airtight contract to ensure that the win-
ning bidder would deliver what he

promised. As the project proceeded, a
requirement would occasionally need
changing, but some relatively straight-
forward change control procedures could
usually handle that.

SOME COMPLICATING FACTORS:
IKIWISI, COTS, AND RAPID CHANGE

The recent developments of IKIWISI
(Il know it when I see it), COTS (com-
mercial-off-the-shelf) software, and the
increasingly rapid change in information
technology have combined to unsettle the
foundations of the old airtight-require-
ments approach.

IKIWISI

Successfully specifying software require-
ments in advance is difficult. But when
user- or group-interactive systems are
involved, it proves nearly impossible.
Users asked to specify requirements gen-
erally claim, “I don’t know how to tell
you, but Il know it when I see it.”

Furthermore, users may initially feel
that they “know it” when they see an ini-

tial demo or prototype. But their needs
and desires change once they begin oper-
ating the system and gain a deeper under-
standing of how it could support their
mission. Thus, the requirements tend to
emerge with continued use and mission
understanding rather than be prespecifi-

able.

CcoTS

Another fundamental tenet of the air-
tight-requirements approach is that the
prespecified requirements completely
determine the system capabilities. How-
ever, with large, pervasive COTS prod-
ucts, the COTS capabilities effectively
determine the requirements.

For example, suppose you specify a
one-second response-time requirement
for a large transaction-processing system,
and the best available COTS database
management system can only handle your
workload with two-second response
time. Are you going to build your own
version of Oracle or Sybase and hope you

Requirements help you deal with
“Pll know it when | see it” users,
off-the-shelf components, and
rapid change.

can make it twice as fast? Hopefully, in
this and similar situations, you’ll recog-
nize that it’s not a requirement if you can’t
afford it. Let the best available COTS
capabilities determine your response time
or other requirements—the reverse of the
airtight-requirements approach.

Rapid change

As I discussed, specifying airtight re-
quirements takes time. But particularly for
Internet and Web-based systems, rapid
change can create an impossible-to-win
game of catch-up. As you slowly grind out
and validate airtight requirements, rapid
changes in COTS releases, competitive
threats, stakeholders, reorganizations, and
price structures make these requirements
increasingly obsolete. And by the time you
thoroughly change-control, update, and

July 2000




Software Management

revalidate them, new developments make
them obsolete all over again.

THE REQUIREMENTS QUANDARY

Should you then forgo requirements
completely? No—that would be like a
convoy trying to navigate a complex route
without a road map. With so many deci-
sion branches, independent project stake-
holders can easily head in wrong or
incompatible directions. Customers and
users still need a description of the prod-
uct destination assuring them that what
developers produce will do what they
need. This means that developers need
some guiding principles—rather than
inflexible rules—to help each project
determine the best combination of re-
quirements rigor and flexibility for each
technical and organizational situation and
environment. This situation-dependence
implies an overarching primary principle:
Avoid one-size-fits-all approaches to
requirements.

The most significant problem with the
airtight-requirements approach was its
attempt to be a one-size-fits-all solution.
Although this tactic fails for IKIWISI,
COTS, and rapid change situations, the
airtight-requirements approach proves
valuable in many situations. Some exam-
ples are software-intensive safety-critical
autonomous control systems for rela-
tively stable products, such as heart pace-
makers, automotive steering systems, and
nuclear power plants.

SURMOUNTING THE
REQUIREMENTS QUANDARY:
FOUR GUIDING PRINCIPLES

Here are four guiding principles that
help tailor a requirements strategy to fit
your situation. These ensure that your
requirements are value-, shared-vision-,
change-, and risk-driven.

Value-driven requirements

Determining your most important
requirements requires a business-case
analysis. This shows the value added from
various combinations of requirements rel-
ative to the investment necessary to
achieve them. Analyzing the business case
also forces you to focus on determining
your system’s operational concept.

This concept should use scenarios to

Computer

identify how your new system will oper-
ate and add value over your existing sys-
tem. It should also identify the success-
critical stakeholders involved in transi-
tioning to the new system, and how the
new system will add value for each stake-
holder. The operational scenarios are
also useful for performing the business-
case analysis; they provide specific situa-
tions around which to quantify costs and
benefits.

Forgoing requirements
completely would be like
trying to navigate a
complex route without
a road map.

A particularly important consideration
for new product introduction is the time-
dependent value of the product sequence.
Arriving first to market with only a par-
tial capability is often preferable to arriv-
ing later with a complete set of re-
quirements. In some cases, such as de-
monstrations at major trade shows, the
value may decrease dramatically if it’s not
available on time. In such cases, using a
schedule-as-independent-variable (SAIV)
rather than a complete-requirements-as-
independent-variable process model is
preferable. A SAIV approach involves pri-
oritizing the requirements, defining a core
capability that is easily deliverable on
time, and architecting the system so
that lower-priority requirements can be
dropped if they threaten on-time delivery.

Note that a value-driven requirements
approach implies concurrent develop-
ment of the requirements, the architec-
ture, and the development plans. For
cost-benefit and return-on-investment
analysis, the requirements determine the
benefits, but the architecture and plans
determine the cost and schedule.

Shared-vision-driven requirements
Rapid changes in the problem situa-
tion (market competition), solution situ-
ation (new technology), and value
situation (price structures or organiza-
tional realignments) imply that the sys-

tem’s stakeholders frequently need to
reassess and revise the system and soft-
ware requirements. This means that it is
more important to emerge from the ini-
tial requirements definition process with
a shared vision of the system’s goals and
values than with a precisely defined
requirements spec. The shared vision
helps all the stakeholders quickly adapt
to the new situation, while the precise
spec takes more effort to change and
some stakeholders may not understand
it. Beyond a shared vision, however,
stakeholders must emerge with a set of
shared commitments to realizing the
vision and its shared values.

Too often, software requirements oper-
ate under a field-of-dreams assumption:
“Build the software to the requirements,
and the benefits will come.” John Thorp
cites extensive evidence that there is little
correlation between a company’s level of
information technology investments and
its profitability or market value (The
Information Paradox, McGraw-Hill,
New York, 1998). His book provides con-
vincing evidence that the field-of-dreams
approach is responsible for many of the
lost opportunities leading to the informa-
tion paradox—the disconnect between IT
spending and business benefit.

The Thorp book also provides the best
approach I’'ve seen for avoiding this
problem: the DMR Benefits Realization
Approach, represented by the results
chain in Figure 1. It establishes a frame-
work that links initiatives, which con-
sume resources (for instance, imple-
menting a new order entry system for
sales), to contributions (not just the
delivered system, but rather its effect on
existing operations) and outcomes.
Outcomes can lead to further contribu-
tions or to added value (like increased
sales). A particularly important contri-
bution of the results chain is the link to
assumptions, which are conditions nec-
essary to the realization of outcomes. For
example, in Figure 1, if order-to-delivery
time is not an important buying criterion
for customers, the reduced delivery time
will not result in increased sales.

This framework is also good for iden-
tifying non-software stakeholder initia-
tives (for instance, training, public
relations, and order fulfillment speed-



ups), which are also necessary conditions
to realizing benefits. It also provides a
way to track progress on all the neces-
sary initiatives and their effects on con-
tributions and outcomes. Tracking
realized benefits permits businesses to
apply necessary corrective actions if ben-
efits don’t materialize (including changes
to the software requirements).

Change-driven requirements

Another major problem with current
software requirements practice and
guidelines is that they only capture a
snapshot of the requirements from any
given moment. Particularly in competi-
tive bidding, such snapshot requirements
specs lead to point solution architectures:
The winning bidder can satisfy the stated
requirements at lowest cost, but the soft-
ware will be expensive to adapt to later
requirements changes.

More than 20 years ago, David
Parnas’s paper, “Designing Software for
Ease of Extension and Contraction”
(IEEE Trans. Software Eng., Mar. 1979,
pp. 128-137), provided an elegant solu-
tion to this problem. It involves identify-
ing the most likely directions of change
in the requirements (for instance, new
workstations on which to operate), and
encapsulating these sources of change in
the design via Parnas’s information-
hiding techniques. For example, you
could hide workstation details in a work-
station-handler module. Then, when the
changes come, they only affect a single
module rather than the entire software
product.

Although information hiding has
become a widely adopted design tech-
nique, it is surprising how rarely devel-
opers practice its counterpart: specifying
and using evolution requirements to
achieve a change-driven design. Most of
today’s standards for specifying require-
ments still do not have a section on evo-
lution requirements.

Another problem with current require-
ments and design specs is that they cap-
ture only the surviving decisions, and not
the rationale by which other alternatives
failed. This often leads to misguided
change adaptation. For example, a pro-
grammer or subcontractor may reuse a
module to save time, even though the

Order-to-delivery time
is an important criterion

Reduce time to
process order

Reduce time to
deliver product

N\

Contribution

Initiative
I\

I

Implement a
new order
entry system

Reduced order
processing cycle
(intermediate
outcome)

Contribution

Increased
sales

Figure 1. Benefits Realization Approach results chain.

module reuse failed to pass the prime con-
tract’s requirements definition because of
portability or maintainability weak-
nesses.

Several techniques are emerging for
capturing such rationale and facilitating
adaptation to change. These include the
results chain described earlier, the stake-
holder win-win negotiation results cap-
tured in the MBASE (Model-Based
System Architecting and Software
Engineering) Feasibility Rationale, and
scenario-based rationale capture.

Risk-driven requirements

Once they’ve done value-, shared-
vision-, and change-driven requirements,
developers still face the question, “How
much requirements specification detail is
enough?” As with similar questions
regarding planning, prototyping, testing,
and change control, the best answer I’'ve
found is to take a risk-driven approach.
This basically says, “If it’s risky to leave
it out, put it in. If it’s risky to put it in,
leave it out.”

Thus, for example, anything less than
thoroughly specifying interface require-
ments between the software and a spe-
cialized hardware device, or between the
software in two large, integrated systems,
is risky. If these interfaces are ambiguous
or undefined, there will be major risks of
interface mismatches causing either seri-
ous operational problems or massive
rework and delays during integration. If

the designs on either side of the interfaces
are still getting sorted out, it’s best to
spawn one or more risk-driven spiral
cycles to suitably define the interfaces.

On the other hand, it’s very risky to
prespecify the exact layout of a GUI in
stiff prose. There’s too much risk of an
IKIWISI phenomenon making the specs
rapidly obsolete. And, with a GUI-
builder package, there’s little risk
involved in changing the layout as new
insights emerge. Thus, in this case, it’s
better to agree to a prototype as the ini-
tial GUI requirements definition, and to
agree to evolve the GUI within the tech-
nical capabilities of the GUI-builder
package.

everal organizations have success-

fully developed approaches that

work well in coping with IKIWISI,
COTS, and rapid change. Some particu-
larly good examples are e-commerce solu-
tion builders such as C-bridge and the
IBM and Oracle e-commerce divisions.
The DMR Group has successfully applied
its Benefits Realization Approach across
a wide variety of application areas, as has
Rational Inc. with its Rational Unified
Process.

In over 100 requirements definitions of
Web-based rapid-development applica-
tions for University of Southern Cali-
fornia and Columbia University clients
using the MBASE approach, my col-

July 2000



Software Management

leagues and I find that the value-, shared-vision-, change-, and
risk-driven approaches to system and software requirements
definition are mutually reinforcing. Using a stakeholder win-
win requirements negotiation approach, business-case analy-
sis, and a benefits-realization approach all help stakeholders
prioritize their requirements and capture the rationale for their
decisions. The lower-priority requirements become evolution
requirements, providing the basis for architecting the system to
easily drop them (if necessary to meet schedule) or incorporate
them in later increments. And the risk analyses developed for the
risk-driven spiral process help determine how much is enough
for the requirements specs. Thus, there are good prospects for
a mutually reinforcing set of requirements practices, providing
a stronger sense of security than was previously achievable with
airtight requirements.

Barry Boebm is director of the University of Southern Cali-
fornia’s Center for Software Engineering. Contact him at
boehm@sunset.usc.edu.

Editor: Barry Boehm, Computer Science Department, University of
Southern California, Los Angeles, CA 90089; boehm@sunset.usc.edu

Sources and Resources

For value-driven requirements, the best source is
Thorp’s The Information Paradox (McGraw-Hill, New
York, 1998). Besides Parnas’ paper, the best source for
change-driven requirements is James Highsmith’s
Adaptive Software Development (Dorset House, 2000).
For shared-vision-driven requirements, Donald Gause and
Gerald Weinberg’s Exploring Requirements: Quality
Before Design (Dorset House, 1989) is excellent. Suzanne
and James Robertson’s Mastering the Requirements
Process (Addison Wesley, 1999) and Michael Jackson’s
Software Requirements and Specifications (Addison
Wesley, 1995) both complement the Gause and Weinberg
book. For risk-driven requirements, the USC MBASE
approach (http://sunset.usc.edu/MBASE) has the most
specific coverage. Some good unified approaches of all
four principles are MBASE, Thorp’s Benefits Realization
Approach, and The Rational Unified Process (Phillippe
Kruchten, Addison Wesley, 1999).

lTlratiilng Yaour

Can TSt

(S

Frem the [EEE Compuier Sodety and fTve purtuer tnlverstites

Continuving education courses based on
software engineering standards.

Computer Society 2000 Authorized Training Centers
e California State University, Sacramento
e New Jersey Institute of Technology

e Oregon Graduate Institute

e Southern Polytechnic State University

o University of Strathclyde

Course descriptions and registration information ¢r€ available

at computer.org/education/

sesiGli LL"L‘LLL

Software Engineering Standards-Based Training
Training Done Right

Computer



